

PII: S0040-4039(96)01191-4

GIGANTRANSENINS A, B, AND C, NOVEL MONO-THF ACETOGENINS BEARING TRANS DOUBLE BONDS, FROM GONIOTHALAMUS GIGANTEUS (ANNONACEAE)

Lu Zeng, Yan Zhang, and Jerry L. McLaughlin*

Department of Medicinal Chemistry and Molecular Pharmacology, School of Pharmacy and Pharmacal Sciences, Purdue University, West Lafayette, IN 47907, U.S.A.

Abstract: Three novel bioactive acetogenins, gigantransenins A (1), B (2), and C (3), were isolated from the bark of *Goniothalamus giganteus* (Annonaceae). 1-3 are C-37 mono-tetrahydrofuran (THF) acetogenins each having a *trans* double bond; their absolute structures were elucidated by spectral and spectroscopic analyses and derivatizations. No Annonaceous acetogenins having *trans* double bonds have been reported previously. 1-3 showed selective inhibitory effects on the human breast tumor cell line (MCF-7) that are comparable with the potency of adriamycin. Copyright © 1996 Elsevier Science Ltd

The Annonaceous acetogenins are a relatively new class of compounds. Their diverse bioactivities have attracted more and more interest worldwide. Over 230 acetogenins, belonging to 23 different types, usually having mono-tetrahydrofuran (THF), adjacent or nonadjacent bis-THF, nonadjacent THF and tetrahydropyran (THP), or tri-THF rings, have been found in 26 species of the Annonaceae. So far, 22 acetogenins bearing *cis* double bonds have been reported; one of these, coriadienin, isolated recently from *Annona coriacea* Mart. has two *cis* double bonds and is considered to be important as a biogenetic precursor in the biosynthesis of certain acetogenins. In our search, directed by the brine shrimp lethality test (BST), for bioactive components from the bark of *Goniothalamus giganteus* Hook. f. Thomas, three novel mono-THF acetogenins, gigantransenins A (1), B (2), and C (3), were isolated. The structures of 1-3 were determined by MS, H NMR, and MR. The absolute stereochemistries of their chiral centers were determined by Mosher ester and CD spectroscopic

methods, respectively.^{5,6} 1-3 are the first examples of acetogenins having *trans* double bonds; such compounds have been proposed as biogenetic precursors of certain acetogenins bearing *erythro* configurations on the hydrocarbon side of their THF ring systems. 1-3 showed significant inhibitory effects among six human solid tumor cell lines with selectivity for the breast cell line (MCF-7) at potencies comparable to adriamycin.

Table 1. Characteristic ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) Data of 1, 2, 1s, 1r, 2s, and 2r.

No.	1		2		1s 1r			28	2r	
	δ_{C}	δ_{H} (J in Hz)	δ_{C}	δ_{H} (J in Hz)	δ_{H}	δ_{H}	Δδ _{1s-1r}	δ_{H}	δ_{H}	$\Delta\delta_{2s-2r}$
1	173.5		173.5							
2	134.3		134.3							
2 3 4	25.2	2.26 tt (7)	25.2	2.26 tt (7)	2.26	2.25	-0.01	2.26	2.25	-0.01
4	27.4	1.52 m	27.4	1.52 m	1.54	1.52	-0.02	1.54	1.52	-0.02 R
10 11	71.7	3.64 m	71.6	3.64 m	4.95	4.92	R	4.95	4.92	R
11 [33.5	1.44 m	33.4	1.44 m						
12	29.2	1.52 m	29.2	1.52 m	1.42	1.40	+0.02	1.42	1.40	+0.02 R
13	73.4	3.46 m	73.5	3.46 m	4.87	4.98	R	4.87	4.98	R
14	82.7	3.84 m	82.8	3.84 m	3.71	3.89	-0.18	3.71	3.89	-0.18
15	28.7	1.68 m	28.7	1.68 m	1.45	1.76	-0.31	1.46	1.78	-0.32
		2.02 m		2.02 m	1.23	1.43	-0.20	1.27	1.43	-0.15
16	28.5	1.68 m	28.7	1.68 m	1.66	1.87	-0.21	1.64	1.85	-0.21
		2.02 m		2.02 m	1.32	1.53	-0.21	1.38	1.53	-0.21 -0.16
17	81.9	3.86 m	82.0	3.86 m	3.94	4.02	-0.08	3.92	3.97	-0.05
18	74.4	3.52 m	74.4	3.52 m	4.88	4.98	Ŕ	4.85	4.96	-0.05 <i>R</i>
18 19	29.0	1.68 m	29.3	1.68 m	1.45	1.42	+0.03	1.45	1.42	+0.03
20	29.3	2.25 m	29.4	2.25 m	1.40	1.72	10.00	1.40		10.00
20 21 22 23 24	127.5	5.72 td (7,15.5)	127.2	5.69 td (7,15.5)	5.58	5.59	-0.01	5.56	5.52	+0.04
້າວ່	136.1	5.58 dd (7, 15.5)	136.2	5.56 dd (7, 15.5)	5.44	5.47	-0.03	5.47	5.36	10.04
22	72.8	4.08 q (7)	72.8	4.06 q (7)	5.34	5.32	-0.03	5.30	5.32	+0.11 <i>S</i>
24	37.4	1.48 m	37.2	1.48 m	1.55	1.48	+0.07	5.30 1.45	1.50	-0.05
24	37.4	1.40 111	37.2	1.40 III	1.65	1.58	+0.07	1.57	1.60	-0.03
24	14.1	0.88 t (7)	14.1	0.88 t (7)	1.00	1.50	+0.07	1.37	1.60	-0.03
34		6.00 ~ (1.5)	140.0	0.00 I (/)						
30	148.8	6.99 q (1.5)	148.8	6.99 q (1.5)						
34 35 36 37	77.4	4.99 qq (2,7)	77.4	4.99 qq (2,7)						
37	19.2	1.41 d (7)	19.2	1.41 d (7)						

¹H and ¹³C NMR spectra suggested that **1-3**⁷ were typical mono-THF acetogenins bearing two flanking hydroxyls, having the *threo-trans-threo* configuration across the THF ring system and possessing an α , β -unsaturated γ-lactone without a 4-OH.¹ The successive losses of four molecules of H₂O (m/z 18) in their CIMS indicated that there are four hydroxyls in each molecule. These groups were also confirmed by the ¹³C NMR spectra, in which four hydroxylated carbon signals were observed at δ 71.7, 72.8, 73.4, and 74.4 in 1, at δ 71.6, 72.8, 73.5, and 74.4 in 2, and at δ 71.6, 72.7, 74.1, and 74.3 in 3.

The presence of a *trans* double bond and an adjacent hydroxyl in 1-3 was proven by decoupling and COSY experiments. Considering 1 as an example, when one hydroxymethine proton at δ 4.08 was irradiated, one double bond proton at δ 5.58 changed from a doublet of doublets to a doublet with a 15.5 Hz coupling constant;

Table 2. Characteristic ¹³C NMR (125 MHz) and ¹H NMR (500 MHz) Data of 3, 3s, and 3r.

No.		3	3 s	3r		No.		3	3 s	3r	
	$\delta_{\rm C}$	δ_{H} (J in Hz)	δ_{H}	δ_{H}	Δδ _{3s-3r}		δ_{C}	δ_{H} (J in Hz)	δ_{H}	δ_{H}	$\Delta\delta_{3s-3r}$
\neg	173.5					17	82.5	3.83 m	3.94	3.99	-0.05
2	134.3					18	74.3	3.46 m	4.88	4.96	R
3	25.2	2.26 tt (7)	2.26	2.25	-0.01	19	29.3	1.46 m	1.44	1.41	+0.03
4	27.3	1.46 m`	1.54	1.52	-0.02	20	33.7	1.68 m	1.63	1.64	-0.01
10	71.6	3.64 m	4.95	4.92	R	21	72.7	4.10 m	5.38	5.36	R
11	33.4	1.46 m				22	132.6	5.47 ddd (2,7,15.5)	5.47	5.36	+0.11
12	29.1	1.54 m	1.43	1.41	+0.02	23	127.5	5.65 ddd (2,7, 15.5)	5.70	5.61	+0.09
13	74.1	3.46 m	4.88	4.96	R	24	32.2	1.48 m	1.50	1.48	+0.02
14	82.5	3.83 m	3.74	3.89	-0.15	1			1.57	1.51	+0.06
15	28.7	1.68 m	1.49	1.78	-0.29	34	14.1	0.88 t (7)			
	ļ	2.02 m	1.27	1.40	-0.13	35	148.8	6.99 q (1.5)			
16	28.7	1.68 m	1.61	1.81	-0.20	36	77.4	5.00 qq (2,7)			
	l	2.02 m	1.40	1.55	-0.15	37	19.2	1.41 d (7)			

1a 263 (11)
$$\frac{90}{90}$$
 413.3285 (9) 497.3120 (11) $\frac{90}{90}$ 407 (23) $\frac{90}{90}$ 317 (4) 413.3279 (5) 497.3134 (5) $\frac{90}{90}$ 407 (14) $\frac{90}{90}$ 317 (6) (calc. 497.319) 1a $\frac{18}{479}$ 497 (7) 407 (14) $\frac{90}{90}$ 317 (8) (calc. 297.1883 (28) (calc. 297.1886) OTMSI OTMSI 13 479 (7) 0TMSI 14 479 (7) 0TMSI 15 $\frac{90}{90}$ 337 (100) $\frac{90}{90}$ 247 (14) 247.2721 (10) $\frac{90}{90}$ 337 (100) $\frac{90}{90}$ 247 (33) (calc. 427.2700)

Figure 1. Mass fragmentations of 1a and 2a.

this demonstrated that one hydroxyl was located adjacent to a *trans* double bond. Also, correlations between protons at δ 4.08 (H-23) and 5.58 (H-22) in 1, δ 4.06 (H-23) and 5.56 (H-22) in 2, and δ 4.10 (H-21) and 5.47 (H-22) in 3, were observed in the COSY spectra. The MS fragments, m/z 297, 427, 497, of TMSi derivatives of 1-3 (Figures 1 and 2), placed one hydroxyl at C-10 and the THF rings at C-14. Double relayed COSY experiments also confirmed the correlations between δ 3.64 (H-10) and 3.46 (H-13) in each of the three compounds. Correlations, between protons at δ 3.52 (H-18) and 5.72 (H-21) in 1 and δ 3.52 (H-18) and 5.69 (H-21) in 2, established five bond relationships for these two protons and permitted the placement of the double bond at C-21,22 and, thus, a hydroxyl at C-23. The MS fragment at m/z 283 in 3 established the placement of a hydroxyl at C-21 and, thus, the double bond at C-22,23.

Figure 2. Mass fragmentations of 3a.

Absolute stereochemistries at C-10,13,18, and 23 in 1 and 2, and at C-10,13,18, and 21 in 3 were assigned by ¹H NMR analysis of per-Mosher ester derivatives (1s, 1r, 2s, 2r, 3s, and 3r). ⁵ Using the positive and negative signs for $\Delta\delta_{s-r}$, the positions were concluded as C-10R, 13R, 14R, 17R, 18R, and 23R in 1, C-10R, 13R, 14R, 17R, 18R, and 23S in 2, and C-10R, 13R, 14R, 17R, 18R, and 21R in 3. The stereochemistries at C-36 in 1-3 were determined by measuring CD spectra and comparing with model compounds. ⁶ Negative Cotton effects were observed at 236.0, 236.4, and 238.0 nm for 1-3, respectively, and indicated that C-36 has the usual S-configuration in each compound.

1 and 2 can be considered as biogenetic precursors for the biosynthesis of certain acetogenins bearing *erythro* configurations.¹ Their existence provides further evidence to substantiate the biogenetic pathways (Figure 3). 1-3 showed bioactivities in the BST LC₅₀ 3.6, 5.8, and 4.2 μ g/ml, and significant cytotoxicities towards six human solid tumor cell lines [A-549 (lung carcinoma) ED₅₀ (μ g/ml) 0.16, 0.21and 0.18,^{8a} MCF-7 (breast carcinoma) 1.0x10⁻², 2.1x10⁻² and 2.2x10⁻²,^{8b} HT-29 (colon adenocarcinoma) 1.5, 1.4, and 1.3,^{8c} A-498

(kidney carcinoma) 1.5, 1.6, and 1.5, ^{8a} PC-3 (prostate adenocarcinoma) 0.18, 0.71 and 1.5, ^{8d} PACA-2 (pancreatic carcinoma) 0.17, 1.5, and 1.1]. ^{8e} Adriamycin as a positive control gave respective ED₅₀ values (μg/ml) of 1.3x10⁻³, 1.3x10⁻², 3.3x10⁻², 7.3x10⁻², 1.2x10⁻², and 1.2x10⁻³. The selectivities (one to two orders of magnitude) of 1-3 on the breast cell line are unusual and are comparable to the potency of adriamycin. The acetogenins act as inhibitors of complex I in mitochondrial electron transport systems and of the plasma membrane NADH oxidase of tumor cells; they show potent *in vivo* antitumor effects, are active against multiple drug resistant cell lines, and are relatively nontoxic to noncancerous cells. ⁹

Figure 3. Hypothesis of the biogenetic pathways of the bullatacin and bulladecin types of acetogenins and of 1 and 2.

Acknowledgment: This work was supported by R01 grant no. CA30909 from the National Cancer Institute, NIH.

REFERENCES AND NOTES

- Rupprecht, J.K.; Hui, Y.-H.; McLaughlin, J.L. J. Nat. Prod. 1990, 53, 237; Fang, X.-P.; Rieser, M.J.; Gu, Z.-M.; Zhao, G.-X.; McLaughlin, J.L. Phytochem. Anal. 1993, 4, 27; Gu, Z.-M.; Zhao, G.-X.; Oberlies, N.H.; Zeng, L.; McLaughlin, J.L. "Recent Advances in Phytochemistry", Vol 29, Ed. by Romeo, J.T. Plenum Press, New York, 1995, pp. 249; Zeng, L.; Ye, Q.; Oberlies, N.H.; Gu, Z.-M.; He, K.; McLaughlin, J.L. Nat. Prod. Rep. 1996, (accepted for publication).
- 2. Sliva, E.L.M.; Roblot, F.; Mahuteau, J.; Cave, A. J. Nat. Prod. 1996, (in press).
- 3. Meyer, B.N.; Ferrigni, N.R.; Putnam, J.E.; Jacobson, L.B.; Nichols, D.E.; McLaughlin, J.L. Planta Med. 1982, 45, 31; McLaughlin, J.L. in "Methods in Plant Biochemistry", Vol 6, Ed. by K. Hostettmann, Academic Press, London, 1991, 1.
- 4. Zhang, Y.; Zeng, L.; Woo, M.-H.; Gu, Z.-M.; Ye, Q.; Wu, F.E; McLaughlin J.L. Hetereocycles 1995, 41, 1743.
- Rieser, M.J.; Hui, Y.-H.; Rupprecht, J.K.; Kozlowski, J.F.; Wood, K.V.; McLaughlin, J.L.; Hanson, P.R.; Zhuang, A.; Hoye, T. R. J. Am. Chem. Soc. 1992, 144, 10203.
- 6. Gypser, A.; Bulow, C.; Scharf, H.-D. Tetrahedron 1995, 51, 1921.
- Gigantransenins A (1), B (2), and C (3) were obtained by repeated reversed and normal phase HPLC separation of bioactive column fractions from the extracts of the title plant (ref. 4). Their molecular formula was C₃₇H₆₆O₇ by HR FAB ms (observed m/z 623.4856 for 1, 623.4892 for 2, and 623.4874 for 3, calcd. 623.4887).
- 8. a. Giard, D.J.; Aaronson, S.A.; Todaro, G.J.; Arnstein, P.; Kersey, J.H.; Dosik, H.; Parks, W.P. J. Natl. Cancer Inst. 1973 51, 1417; b. Soule, H.D.; Vazquez, J.; Long, A.; Albert, S.; Brennan, M. J. Natl. Cancer Inst. 1973, 51, 1409; c. Fogh, J.; Trempe, G. "Human Tumor Cells" Ed. by Fogh, J. Plenum Press, New York, 1975, p.115; d. Kaighn, M.E.; Narayan, K.S.; Ohnuki, Y.; Lechner, J.F.; Jones, L.W. Invest. Urol. 1979, 17, 16; e. Yunis, A.A.; Arimura, G.K.; Russin, D. Int. J. Cancer 1977, 19, 128.
- Ahammadsahib, K.I.; Hollingworth, R. M.; McGovren, J. P.; Hui, Y.-H.; McLaughlin, J.L. Life Sciences 1993, 53, 1113.
 Morre, D.J.; de Cabo, R.; Farley, C.; Oberlies, N.H.; McLaughlin, J.L. Life Sciences 1995, 56, 343-348; Oberlies, N.H.; Jones, J.L.; Corbett, T.H.; Fotopoulos, S.S.; McLaughlin, J.L. Cancer Lett. 1995, 96, 55. Landolt, J.L.; Ahammadsahib, K.I.; Hollingworth, R.M.; Barr, R.; Crane, F.L.; Buerck, N.L.; McCabe, G.P.; McLaughlin, J.L. Chemico-Biol. Interact. 1995, 98, 1.